Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seeds: impacts of glycine concentration and pH.

نویسندگان

  • Yu-Fen Huang
  • Kuan-Ming Huang
  • Huan-Tsung Chang
چکیده

This paper describes the preparation of Au core-Au-Ag shell nanoparticles (NPs) in different morphologies by controlling both the pH and the glycine concentration. Using a seed-growth method, we prepared high-quality Au core-Au-Ag shell NPs from a glycine solution under alkaline conditions (pH>8.5). By controlling both the pH and the glycine concentration, we prepared dumbbell-shaped and peanut-shaped Au core-Au-Ag shell NPs readily by depositing gold and silver, reduced by ascorbate, onto the gold nanorods. We have found that the glycine concentration that is optimal for preparing high-quality Au core-Au-Ag shell NPs differs at the various values of pH. At pH<8.5, the glycine concentration is not important, but, when preparing dumbbell- and peanut-shaped Au core-Au-Ag shell NPs, it should be greater than 50 mM and greater than 20 mM at pH 9.5 and 10.5, respectively. Glycine plays a number of roles during the synthesis of the Au core-Au-Ag shell NPs by controlling the solution pH, altering the reduction potentials of gold and silver ions through forming complexes with metal ions (Au(+) and Ag(+)), minimizing the formation of Ag(2)O, AgCl, and AgBr precipitates, and stabilizing the thus-prepared NPs. At pH 9.7, we observed the changes in the morphologies of the Au core-Au-Ag shell NPs-from regular (rectangular) to peanut- and dumbbell-shaped, and finally to jewel-, diamond-, and/or sphere-shaped-that occurred during the course of a 60-min reaction. In addition, we were able to affect the shapes and sizes of the Au core-Au-Ag shell NPs by controlling the reaction time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shell...

متن کامل

Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures

Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanopartic...

متن کامل

Hydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus

Objective(s):   Metal nanoparticles (NPs) offer a wide variety of potential applications in pharmaceutical sciences due to the unique advances in nanotechnology research. In this work, bimetal Ag-Au alloy NPs were prepared and their combinations with other antibiotics were tested against Staphylococcus aureus.   Materials and Methods: Firstly, Ag-Au alloy NPs with Au/Ag molar ratio of 1:1 was f...

متن کامل

Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles.

Metal nanoparticles (NPs) are of great interest due to their special optical, [ 1–3 ] electronic, [ 4–8 ] and catalytic [ 9,10 ] properties. [ 11 ] Among metal NPs, Au NPs have been investigated most extensively because of their facile preparation, resistance to oxidation, and surface plasmon resonance (SPR) band that can absorb and scatter visible light. [ 3 ] Core/ shell and alloy bimetallic ...

متن کامل

Gradual Growth of Gold Nanoseeds on Silica for Silica@Gold Core-Shell Nanoparticles and Investigation of Optical Properties

Metal nanoshells consists of a dielectric core surrounded by a thin noble metal shell, possess unique optical properties that render nanoshells attractive for use in different technologies. This paper reports a facile method for growth of small gold nanoparticles on the functionalized surface of larger silica nanoparticles. Mono-dispersed silica particles and gold nanoparticles were prepared by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 301 1  شماره 

صفحات  -

تاریخ انتشار 2006